This is an interesting topic and a cursory glance at hydrogen peroxide vs bleach for treating
drinking water proved to be a worthwhile Web search. The anecdotal reports were legion ... but I came away convinced that hydrogen peroxide wouldn't be my choice for treating drinking water.
I have captured below some info from Wiki about bleach for treating water; it succinctly echoes other science-based info I read, including some important tips and a couple of questions that invite more
research:
Antimicrobial efficacy
The broad-spectrum effectiveness of bleach, particularly sodium hypochlorite, is owed to the nature of its chemical reactivity with microbes. Rather than acting in an inhibitory or toxic fashion in the manner of antibiotics, bleach quickly reacts with microbial cells to irreversibly denature and destroy many pathogens. Bleach, particularly sodium hypochlorite, has been shown to react with a microbe's heat shock proteins, stimulating their role as intra-cellular chaperone and causing the bacteria to form into clumps (much like an egg that has been boiled) that will eventually die off.[8] In some cases, bleach's base acidity compromises a bacterium's lipid membrane, a reaction similar to popping a balloon. The range of micro-organisms effectively killed by bleach (particularly sodium hypochlorite) is extensive, making it an extremely versatile disinfectant. The same study found that at low (micromolar) sodium hypochlorite levels, E. coli and Vibrio cholerae activate a defense mechanism that helps protect the bacteria, though the implications of this defense mechanism have not been fully investigated.[8]
In response to infection, the human immune system will produce a strong oxidizer, hypochlorous acid, which is generated in activated neutrophils by myeloperoxidase-mediated peroxidation of chloride ions, and contributes to the destruction of bacteria.[9][10][11]
Disinfection
Sodium hypochlorite solution, 3-6%, (common household bleach) must be diluted to be used safely when disinfecting surfaces and when used to treat drinking water. When disinfecting most surfaces, 1 part liquid household bleach to 100
parts water is sufficient for sanitizing. Stronger or weaker solutions may be more appropriate to meet specific goals, such as killing resistant viruses or sanitizing surfaces that will not be in contact with
food. See
references for more information.[30][31]
In an
emergency, drinking water should be treated by boiling for 1–3 minutes, longer at higher altitudes. If boiling is not possible, water can be chemically treated with a ratio of 2 drops of plain liquid household bleach (5-6% sodium hypochlorite solution) per liter of water or 8 drops of bleach per gallon (3.79L) of water; 1/2 teaspoon bleach per five gallons (19L) of water. Do not use powdered bleach, or bleach with scents, cleaners or other additives. Do not collect water for treatment from flood waters or other potentially contaminated sources. If water appears dirty or cloudy, let it settle and/or filter the water before adding the bleach. Let treated water stand covered for 30 minutes. If water is still cloudy after filtering, double the amount of bleach used. If the water is very cold, either warm it before treatment or double the treatment time. Treated water should still have a slight bleach
odor after treatment. If it does not, repeat the treatment. If no bleach
odor is evident after a second treatment, discard the water and find a better water source.[32][33][34][35] Inappropriate dilutions of bleach can endanger your
health.
Roger