OPENCPN debug version, Compiling a release version for plugin testing

by Rick Gleason October 20, 2012
Supplement to: Development debugging environment setup help - Windows
OpenCPN Cruisers and Forums Note #74 has the most current Setup Help in this thread. Also refer to Compiling Windows on the OpenCPN website
Note about plugins:

It is very difficult to test and run plugins from a debug build. The best way to test plugins is by creating a Release Build or to use the downloaded or installed version. We assume the following:
1. You are using Visual Studio 2010

2. You can successfully create a Development Debugging environment.

3. You have used Git to update your local source tree.

4. You have manually updated certain selected folder in the "build" directory after refreshing your local git repository.

5. If you have any questions about these refer to the Opencpn Compiling documentation or to the previous Supplement Document.
6. For example, while testing a beta version, we were asked to test AIS, and because I did not have a Nema connection available I needed to run the VDR plugin which sends a nema data stream to OpenCpn, and is useful for checking AIS plugin. Because I was testing plugins, I could not run them from the compiled debug version, so it was necessary to create a Release Build. What follows attempts to describe this process.
First Check your Debug Version

After using 'git', Just 'build' the new debug version.
1. NOTE: There is no need to rerun cmake every time you pull new stuff from github.

All you need to do is "git fetch", go to Visual Studio and "build".

2. Open MS VSC++ and pick Debug - Build Solution
3. Then pick Debug - Start Debugging to check that it works.
Some definitions

Release Build - The result is an optimized executable file(s)
Debug Build - The result is a larger program with code inserted for testing.
now change your compile environment - First a little background
Refer to "How to: Set Debug and Release Configurations" - Visual Studio 2010

http://msdn.microsoft.com/en-us/library/wx0123s5%28v=VS.100%29.aspx
1. A Visual Studio 2010 project has separate configurations for Release and Debug versions of your program. As the names imply, you build the Debug version for debugging and the Release version for the final release distribution and executibles.

2. If you create your program in Visual Studio, Visual Studio automatically creates these configurations and sets appropriate default options and other settings. With the default settings:

3. The Debug configuration of your program is compiled with full symbolic debug information and no optimization. Optimization complicates debugging, because the relationship between source code and generated instructions is more complex.

4. The Release configuration of your program contains no symbolic debug information and is fully optimized. Debug information can be generated in Program Database Files (C++), depending on the compiler options that are used. Creating PDB files can be very useful if you later have to debug your release version.

5. You can switch between Release and Debug versions by using the Standard toolbar or the Configuration Manager.

6. Note: When you set up Visual Studio, you are asked to choose a set of Development Settings for your primary programming language. If you choose the Visual Basic Development Settings, the tool for choosing the Debug or Release configuration does not appear in the toolbar. Instead, Visual Studio automatically chooses the Debug configuration when you choose Start from the Debug menu and the Release configurations when you use the Build menu.
7. To change the Development Settings, see "How to: Restore Hidden Debugger Commands". After you change the Development Settings, make sure that "Show advanced build configurations" is selected in the Options dialog box, Project and Solutions category, General page.

now just create the release build

1. Open the program Microsoft Visual Studio 2010

2. Pick the project file as you normally do C:/...opencpn-git/build/opencpn.sln

3. Let it load. Refer to MS VS 2010 Help "Building in Visual Studio"
4. Now in the second level command line look for the first dropdown list. It will probably say "Debug". Drop that down and pick "Release" .

5. Then highlight the top item in Solution Explorer on the left "Solution Opencpn (21 projects)" right click and pick "Build".

6. Simple as that....it starts.

17> mwd.cpp

17> Generating Code...

17> Compiling...

17> vwt.cpp

17> mta.cpp

17> Generating Code...

17> Creating library C:/Data-Dart/Up-Soft/Navigation/opencpn-git/build/plugins/dashboard_pi/Release/dashboard_pi.lib and object C:/Data-Dart/Up-Soft/Navigation/opencpn-git/build/plugins/dashboard_pi/Release/dashboard_pi.exp

17> dashboard_pi.vcxproj -> C:\Data-Dart\Up-Soft\Navigation\opencpn-git\build\plugins\dashboard_pi\Release\dashboard_pi.dll

19>------ Build started: Project: ALL_BUILD, Configuration: Release Win32 ------

19> Building Custom Rule C:/Data-Dart/Up-Soft/Navigation/opencpn-git/CMakeLists.txt

19> CMake does not need to re-run because C:\Data-Dart\Up-Soft\Navigation\opencpn-git\build\CMakeFiles\generate.stamp is up-to-date.

19> Build all projects

20>------ Skipped Build: Project: PACKAGE, Configuration: Release Win32 ------

20>Project not selected to build for this solution configuration

21>------ Skipped Build: Project: INSTALL, Configuration: Release Win32 ------

21>Project not selected to build for this solution configuration

========== Build: 12 succeeded, 0 failed, 0 up-to-date, 9 skipped ==========

7. Holy Christmas, it just did a Release build!

8. Now we have to find what file to run. Opencpn.exe of course.

9. Find Opencpn.exe under C:\Data-Dart\Up-Soft\Navigation\opencpn-git\build\Release.
10. This subdirectory is new, it was not there before.
Now find the opencpn.exe and start using it.

1. The best way is to leave the installed version alone, and run the release build from it's build location, just like the debug build.

2. The Release Build opencpn.exe is in C:\,<data-dir.\opencpn-git\build\release
3. You should see GARMINHOST.lib,NMEA0183.lib, opencpn.exp, opencpn.lib, S57ENC.lib in the release directory or sub-directory.
4. Check the operation of Opencpn, rebuild the chart database.

5. Make sure you have the plugins in the correct directory.

6. Which, as usual, means you need to provide copies of uidata, s57data and friends. Plus you can now have a plugins folder where you can put standard OpenCPN dll files and it will work.

7. The nmea files you can put wherever you want. You still need to select it to run it.

getting vdr plugin running with a nmea file so you can see ais operations

1. You've got to do this. It will convince you that AIS is going to be a huge improvement even though we must recognize that all ships are not required to have it.
2. make sure you have the plugins. (including VDR). When you enable VDR

A. Preferences button is greyed and will not open after enable because there are no preferences, it just streams Nmea to opencpn.
B. Went here from the Plugins page http://opencpn.org/ocpn/downloadplugins
C. Then to get the source was sent here https://github.com/SethDart/vdr_pi
3. Just click on the Icon in the Toolbox to "Play" and then you are able to set the path to a nmea file. I would suggest using the Rasch.nmea file from Jesper (I will attach it).

4. I then checked the Options GPS tabe Nmea stream checked and I saw it was streaming.
5. Then found a boat located near Skarda Croatia with lots of AIS signals.

6. Absolutely cool.

