Compiling for Debug Environment -Windows Supplement
Setting up a "Debug Environment' under Windows for Newbies.
Dated August 28, 2012 - Preliminary Summary

This is a simpler subset of setting up a 'Development Environment' which does require all of the actions listed in "Compiling Windows" intended to assist Newbies who wish to help debug the current development version of OpenCPN.

First Steps
1. Update Windows, if using Windows XP, SP3 is required.
2. Create a Restore point for your computer.
3. Read "Important Notes" under "Compiling Windows" and the notes for installing each program.
4, It is advisable to shut-down and reboot after installing every two programs in the list. (The first time I installed these programs I was forced to "restore" because windows would not start properly.)

Installing the Programs

1. VC++2010 Express VC++ 2010 Express with Service Pack 1

SP1 install required three "Windows update checks") & register the program.

2. VC++ 2008 Express Edition
Skipped, don't install.

3. Git for Windows
Installed Git-1.7.11-preview20120710.exe , (Aug 2012). "Defaults for all the installation settings are fine except the following:

On the „Adjusting your PATH environment“, select „Run Git from the Windows Command Prompt“
On the „Choosing CR/LF behavior“ select „Commit line endings as they are“

Don't worry about creating your own personal repository because we are not going to be making changes to code and are only going to use a Git command to download the current versions of Opencpn from the Opencpn git repository. Y

You can read the link to the tutorial, but much of it does not apply, Git For Windows Developers You do not need to create a local repository and create the SSH Keys as described, since we are just going to be "Getting OpenCpn Code" to setup a Debug environment and not contributing code.

Right click on C drive and now have "Git init" "Git Bash" and "Git Gui" Choices. [Git Gui wants me to create or edit a repository or clone one. -beyond this exercise]

4. Shut-down and Reboot

5. Cmake - Windows (Win32 Installer) cmake-2.8.9-win32-x86.exe Latest Windows version (Aug 2012)

Cmake is a compiler which will be used to compile source code.
During Installation, let the setup program add cmake to the system PATH variable and then later check to find the path variable to "cmake 2.8/bin" (I'll cover this below.)

5. Gettext http://www.poedit.net/download.php#win32 The current (Aug 2012) Windows executible is poedit-1.5.2-setup.exe

Poedit is cross-platform gettext catalogs (.po files) editor. It is built with wxWidgets toolkit. The building of Opencpn from source code requires this program.

My Windows 7 (x64) Sixty-four bit system installed Poedit to the directory "C:\Program Files (x86)\Poedit" and I had made a path to "C:\Program Files\Poedit\bin", causing compile problems. So check where Poedit is installed before setting the PATH variable.

Add gettext to your PATH - if you installed Poedit, right-click My Computer, select Properties... and on the Advanced tab click on Environment Variables button and add "C:\Program Files\Poedit\bin" OR "C:\Program Files (x86)\Poedit\bin" to the PATH system variable. Be sure to put a semi-colon (;) between variables, they are hard to see! Doing this properly is important because things don't compile correctly if done improperly!

6. Shut down and reboot

7. NSIS (Unicode) - skipped. We do not need to build the install package for Opencpn.

8. Prerequisite -WxWidgets - http://www.wxwidgets.org/downloads/#latest_stable Download wxMSW-2.8.12-Setup.exe and install it

Under "Current Stable Release: wxWidgets 2.8.12 Downloads" - "Source Archives"

Pick "wxMSW - installer for sources (not binaries) Windows, with manual (other formats: zip)" - wxMXW-2.8.12-Setup.exe will pop up.

After installation, refer to Compiling Windows under wXWidgets, making changes to "include\wx\msw\setup.h" and add the two "#define" noted. For me wxWidgets installed in the root directory. edit C:\wxWidgets-2.8.12\include\wx\msw\setup.h and insert

"#define wxUSE_GRAPHICS_CONTEXT 1"
" #define wxUSE_GLCANVAS 1"
-after the line: #define _WX_SETUP_H_

Edit and Check the Path Environment -add "c:\wxwidgets-2.8.12\lib\vc_dll" to the PATH environment variable

9. Check Environment Variables - Now is a good time to do this.

First check all the paths to the above programs. On my Win7x64 computer programs installed to the paths listed below:

Locations of programs:
MS VS10 C:\Program Files (x86)\Microsoft Visual Studio 10.0
Git C:\Program Files (x86)\Git
CMake 2.8 C:\Program Files (x86)\CMake 2.8
GetText PoEdit C:\Program Files (x86)\Poedit
wxWidgets C:\wxWidgets-2.8.12
OCPN Git C:\ <your data directory>\<Navigation -optional>\opencpn-git (Make this directory yoursell)
OCpn Source C:\ <your data directory>\<Navigation -optional>\opencpn-git\opencpn (Created by Git for Source Files)
OCpn Build C:\<your data directory>\<Navigation-optional>\opencpn-git\build (Make this directory yourself)
NOTE: The OCPN Source and Build should not be under Program Files OR Program Files (x86)
Next Right-click My Computer, select Properties... and on the Advanced tab click on Environment Variables button
 "Under user variables for" highlight "Path" select "Edit" and check or add something like the following to the values list:
 ..C:\Program Files (x86)\Poedit\bin;C:\Program Files (x86)\Git\bin;C:\wxWidgets-2.8.12\lib\vc_dll
 These path names must correspond to the program installation paths! Click OK to close the PATH Variable.
 Then add several new Variables for:
 Variable:"Git" Value: " C:\Program Files (x86)\Git\bin" -Note the (x86) option
 Variable: "Poedit" Value: "C:\Program Files (x86)\Poedit\bin" -Note the (x86) option
 Variable "WXWIN" Value: "C:\wxWidgets-2.8.12"

Okay this housekeeping and set of pointers to critical programs should be checked and you are then ready.

10. Compile wxWidgets alternative 1: From command line (recommended and faster)
 A. Use "Start" - "All Programs"- "Visual Studio 2010 Command Prompt" and navigate to

cd C:\${WXDIR}\build\msw
OR for my setup cd C:\wxWidgets-2.8.12\build\msw

B. Then compile using the makefile with the following command :

nmake -f makefile.vc BUILD=release MONOLITHIC=0 SHARED=1 UNICODE=1 USE_GDIPLUS=1 USE_OPENGL=1
Visual Studio Command Prompt (2010) will show "Creating library...." a number of times. No error comments at the end.
...link /DLL /NOLOGO /OUT;..\..\lib\vc_dll\wxbase28u_vc_custom.dll \pdb: "..\..\lib\vc_dll\wxbase28u_vc_custiom.pdb"
LIBPATH..\..\lib\vc_dlll @c:\Users\Rick\AppData\LOcal\Temp\nmD3B5,tmp
Creating library ..\..\libvc_dl\wxbase28u.lib and object ..\..\lib\vc_dllwxbase28u.exp And so on...

B. If you want to fully debug OpenCPN, build the wxWidgets debug dlls also.

nmake -f makefile.vc BUILD=debug MONOLITHIC=0 SHARED=1 UNICODE=1 USE_GDIPLUS=1 USE_OPENGL=1
Visual Studio Command Prompt (2010) will show "link...."

C. After executing both nmake commands above several times, there would be no messages with just a new blank line once the command had completed execution. I believe wxWidgets has compiled. The newly compiled files should be in C:\wxWidgets-2.8.12\lib\vc_dll

D.wxWidgets alternative 2, - skipped

E, Convert solution to VC++ format, - skipped

F. Convert solution to VC++2008 format - skipped

G-Reboot computer.

11. Getting the OpenCPN source code (downloading current opencpn source from a repository using git)

A. Start Visual Studio Command Prompt (2010) - from "Start" "All Programs" and from within the command prompt issue:

cd \
cd C:\<Your Data Directory>
git clone git://github.com/OpenCPN/OpenCPN.git opencpn-git
Prompts:
"Cloning into 'OpenCPN' ...remote counting objects...remote compressing objects 100% done....receiving objects 100%...Resolving deltas 100%, done."
C. Now check C:/<Your data directory>/ directory, there should now be a new "opencpn-git" directory which has all the source code downloaded from the remote repository.

D. Note: I found that issuing the git clone command from the VS10 command prompt was a slow download but it worked.

12. Building the OpenCPN source
A. From within or Start Visual Studio Command Prompt (2010)

cd \
cd cd C:\<Your Data Directory>\opencpn-git
mkdir build
cd build
cmake -G "Visual Studio 10" ..
B. Note that errors in compiling are found in CMakeCache.txt from C:\<Your Data Directory>\opencpn-git\opencpn (directory for Source files downloaded with git clone command)

C. If it goes well: from within Visual Studio Command Prompt (2010)

cd C:\<Your Data Directory>\opencpn-git\build
cmake --build

13. Compiling Alternative 1 From Visual Studio Open the solution created by cmake (build/OpenCPN.sln)

Compile the whole solution or individual projects. You have to compile project opencpn before you can compile any plugins (to be fixed in the configuration process)Final Build of the OpenCPN Debug version.

A. To be able to run the debug build,

Create C:\Data-Dart\Up-Soft\Navigation\opencpn-git\build\uidata\ and
copy the following files from C:\Data-Dart\Up-Soft\Navigation\opencpn-git\src\bitmaps into it

styles.xml,
toolicons_traditional.png,
toolicons_journeyman.png,
toolicons_journeyman_flat.png
B. We did the following, so you can ignore it. (PATH = C:\wxWidgets-2.8.12\lib\vc_dll) If you didn't add the WX DLL path to the PATH environment variable earlier, copy the needed WX DLLs to the build directory (Debug or Release, depending on which version you build). The DLLs can be found in C:\${WXDIR}\lib\vc_dll and you will need:

Debug:
wxbase28ud_net_vc_custom.dll, wxbase28ud_vc_custom.dll, wxbase28ud_xml_vc_custom.dll, wxmsw28ud_adv_vc_custom.dll, wxmsw28ud_core_vc_custom.dll - DONE because the goal is to debug!

Release:
wxbase28u_net_vc_custom.dll, wxbase28u_vc_custom.dll, wxbase28u_xml_vc_custom.dll, wxmsw28u_adv_vc_custom.dll, wxmsw28u_core_vc_custom.dll

C. Start- MS Visual Studio 2010 - Visual C++ Express 2010 (not the command prompt version, select the program). Also there is a decent Introduction to using VS2010 at youtube.com /watch?v=z5gBIizwsY0 - 3 part video to get you started. -Just get the idea first then go back to it.

D. No projects are shown, so go to "File" - "Open" - "Project/Solution"

E. Then browse to "C:\Data-Dart\Up-Soft\Navigation\opencpn-git\build" and open the file "OpenCPN.sln" The computer starts processing and "Solution Explorer" Window on the left fills up. Now the left pane Solution Explorer has "Solution 'OpenCPN' (21 projects)" at the top with ALL_BUILD below that. You can highlight each of those, right click and select "Build".

F. Then, if you want to debug OpenCPN, using the "Solution Explorer" window, scroll down to the middle and select "opencpn" and highlight it. Right click and set it as a "start-up project" or Pick "Project" - "Set as Startup Project". The right click "opencpn" again and pick "Build".
Once that is complete, right click again and pick "Debug" - "Start new Instance" OR with "opencpn" highlighted, pick from menu "Debug - Build Solution"
 Program starts building
 Prompt for the projects that are out of date... would you like to recompile old projects? select yes or no
 Prompt for Com Port 3 if no GPS connected.
 Then you should have a new Window for typical OpenCPN 3.1.__ with the graphic interface.

G. Now when you want to run OpenCPN, start MS Visual Studio 2010 - Visual C++ Express 2010 make sure the file opencpn.sln is loaded and hit F5.

H. As Pavel says,
Now the easiest scenario that comes when you find a bug making OpenCPN crash:

Run the debug build
Make it crash
Examine the output (call stack etc.)
Send it to the devs with as much information as you can provide
