
Compiling - Windows
The officially supported Windows build platform for OpenCPN 4.1 beta and later is Microsoft Visual Studio 2013
Express for Windows Desktop.
It is still possible to perform the build with older versions of Visual Studio - particularly if you are still running
Windows XP on your development machine, you can not install a Visual Studio version newer than 2010. If what
you have to do differs from the default VS2013 workflow, it is clearly noted in the instructions bellow.
Note: Older versions of OpenCPN, up to 4.0, used the VS2010 toolchain and wxWidgets 2.8, refer to the history of
this page for the build instructions in case you need them.
Important note before you start
The order of the steps described below really matters.
Don't skip any steps not explicitly marked as optional and don't change their order unless you really know what you
are doing.
It's an excellent idea to read the whole text first and make sure you understand what it's talking about, especially if
you are new to software development.
If you encounter any problems, please get to us in the forum and tell us where you are failing so we can help you
and improve these instructions for the others.
1. Prerequisites
1.1 Visual Studio 2013
Get Visual Studio 2013 Express for Windows Desktop or Visual Studio 2013 Community Edition (with Update
4) from https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
If you use Windows XP or Vista, upgrade to Windows 7 or newer or get Visual Studio 2010 instead. Install Visual Studio - you can disable all the optional features offered to save some space
1.2 Git
Get the Git installation packages from http://msysgit.github.io Install and let it register in the PATH environment variable The defaults for all the installation settings are fine except the following: On the Adjusting your PATH environment, select Run Git from the Windows Command

Prompt. On the Choosing CR/LF behavior select Checkout as-is, Commit Unix LF. This is really important, the codebase uses Unix LF line endings and committing CR/LF
makes the commits huge and hides their real content. If your git is already installed, please edit the .git/config file in your local working copy of the

OpenCPN source tree and set autocrlf = input in the [core] section on top. If you want a tutorial, have a look at the series of articles starting at
http://www.lostechies.com/blogs/jason_meridth/archive/2009/06/01/git-for-windows-developers-
git-series-part-1.aspx

1.3 Cmake
Get the latest CMake installation packages from http://www.cmake.org Install and let it register in the PATH environment variable
1.4 POedit
Get the latest POedit installation package from http://www.poedit.net Install On 32bit Windows, add C:\Program Files\Poedit\GettextTools\bin to PATH environment variable. On a

64bit system, the path will be C:\Program Files (x86)\Poedit\GettextTools\bin

 On Windows 7 and later, open Computer, click System Properties, and in the left column click
Advanced System Settings. On the Advanced tab, click on Environment Variables button and add the path in which
msgfmt.exe resides to the PATH system variable. On Windows XP, right-click My Computer, select Properties...

1.5 NSIS
In case you want to create installation packages, get NSIS Unicode 2.46.5 from http://www.scratchpaper.com/ Install Due to a "bug" in CMake, which only looks at "HKEY_LOCAL_MACHINE\SOFTWARE\NSIS" for the

installation location of NSIS and the Unicode version adds its registry key in
"HKEY_LOCAL_MACHINE\SOFTWARE\NSIS\Unicode", there is some registry tweaking needed.

Just copy the value (it's the installation path) of the "HKEY_LOCAL_MACHINE\SOFTWARE\NSIS\Unicode" key
to "HKEY_LOCAL_MACHINE\SOFTWARE\NSIS".
Alternatively you can just run the batch file 'CopyNSISUnicodeRegKey.bat' which is also included in the GIT
repository -> buildwin\NSIS_Unicode\CopyNSISUnicodeRegKey.bat
Depending on your security settings, mainly on Windows 7 and newer, you may have to run it as Administrator
(right-click the file and select "Run as administrator".)
This means if you also want to use the ANSI NSIS version you first have to change the value of
"HKEY_LOCAL_MACHINE\SOFTWARE\NSIS" registry key according to the installation path of the respective
version you want to use.
To make the installer package use proper language name transaltions, it's necessary to modify file C:\Program
Files\NSIS\Unicode\Contrib\Language files\Norwegian.nsh and change the line!insertmacro LANGFILE "Norwegian" "Norwegian"
to!insertmacro LANGFILE "Norwegian" "Norsk"

 You should also read the Modularized Packaging chapter of this manual.
2. wxWidgets 3

 Get the latest 3.0 release from http://wxwidgets.org/downloads/ (at the time of this writing 3.0.2) Uncompress to your drive (we will assume to C:\wxWidgets-3.0.2 in this text)
2.1 Compiling from the command line (recommended)

 Run the Developer Command Prompt for VS2013 Go to your wxWidgets build tree (cd C:\wxWidgets-3.0.2\build\msw) and build both release and debug
configurations, compatible with Windows XP

nmake -f makefile.vc BUILD=release SHARED=1 CFLAGS=/D_USING_V120_SDK71_
CXXFLAGS=/D_USING_V120_SDK71_
nmake -f makefile.vc BUILD=debug SHARED=1 CFLAGS=/D_USING_V120_SDK71_
CXXFLAGS=/D_USING_V120_SDK71_
In case you are using Visual Studio 2010, the build commands are:
nmake -f makefile.vc BUILD=release SHARED=1
nmake -f makefile.vc BUILD=debug SHARED=1

2.2 Compiling from Visual Studio IDE (optional)
This option is more work and not needed for 99% of people. In Visual Studio, open wx_vc12.sln

 Select all project from the Project Explorer, right-click, select Properties, Select All Configurations from
the Configuration: dropdown on top and in Configuration Properties -> General set the Platform Toolset
to Visual Studio 2013 - Windows XP (v120_xp) Build both the Debug and Release DLL targets In case you are using Visual Studio 2010, use the wx_vc10.sln solution and don't change the platform
toolset

2.3 Add wxWidgets to your PATH
In order for Cmake to find wxWidgets, you must add your wxWidgets root director C:\${WXDIR} (for example
C:\wxWidgets-3.0.2) to your PATH environment variable.
To be able to run debug builds and release builds without install add C:\${WXDIR}\lib\vc_dll to your PATH.
After doing this, you have to restart the running programs (cmd.exe, cmake-gui, VisualStudio etc) to make sure they
"see" the changed environment variables.
If you are unsure, restart Windows and everything will be set. If you don't do it, you will have problems running
your debug builds later.
If you have problems with cmake not finding your wxWidgets installation, try also creating another environment
variable called WXWIN with a value of C:\${WXDIR} (for example C:\wxWidgets-3.0.2). Also, try creating an
environment variable called wxWidgets_LIB_DIR=C:\${WXDIR}\lib\vc_dll and
wxWidgets_ROOT_DIR=C:\${WXDIR}. Again, don't forget to restart the running programs involved in the build.
3. Get the OpenCPN source
Run Developer Command Prompt for VS2013 from Start menu → Programs → Microsoft Visual Studio →
Visual Studio Tools To get the source for the first time, issue

git clone git://github.com/OpenCPN/OpenCPN.gitIn case of error messages like this one:"error: unable to create filebuildwin/NSIS_Unicode/CopyNSISUnicodeRegKey.bat (Permission denied)"
observed under Windows 8.1, run the command from an Administrator console To update the code you cloned before, cd into the source directory
cd OpenCPN and issue
git fetch --all

3.1 Get the binary dependencies
In case you want to make the Release builds and create the setup packages, you must get OpenCPN_buildwin.7z
(In case you are using Visual Studio 2010, use OpenCPN_buildwin-vc10.7z instead) and extract the archive into
your toplevel OpenCPN source directory created by the clone operation above. The archive contains some binary
files needed to link OpenCPN and produce the installer. In case you just want to develop/debug OpenCPN, this step
is not needed.
In case you need the PDB files for the prebuilt libraries (unlikely, really, if you don't know what for, you don't), get
them from here.

4. Build OpenCPN
 Run Developer Command Prompt for VS2013 from Start menu → Programs → Microsoft Visual Studio

→ Visual Studio Tools CD into your the topmost source directory and create a directory named build under it:
mkdir build
4.1a – Configuring the build from command line (recommended):

 cd into the build directory

 issue cmake -T v120_xp .. In case you are using Visual Studio 2010, the command is cmake ..
4.1b – Configuring the build Using Cmake-gui (in case the previous was too
simple for you)

 Run "CMake (cmake-gui)" from Start menu → Programs → Cmake 3.2. Fill in your source and build directories. source =/OpenCPN build =/OpenCPN/build Click on the Configure button. If you are asked to choose the generator, select "Visual Studio 10". The information which appeared is red and the Generate button stays disabled? Just hit Configure again...
Ignore GTK2_GTK_INCLUDE_DIR-NOTFOUND and wxwidgets_wxrc_EXECUTABLE_NOTFOUND. Click on the Generate button. Solution and project files should be created in your build directory.

IMPORTANT suggestion:
Use CMAKE GUI tool to configure OpenCPN to verify that wxWidgets_LIB_DIR points to the {root}/lib/vc_dll
directory.
This check is necessary since the cmake FindWxWidgets module sometimes finds the wrong source and/or build
config.
If you are using CMake version 3.0 or later you will get warnings about Policy CMP0043.
These can be ignored.
4.2a – Compiling from the command line

 Run Developer Command Prompt for VS2013 from Start menu → Programs → Microsoft Visual Studio
→ Visual Studio Tools. cd into the build directory. issue for a release build
cmake --build . --config releaseor for a debug build
cmake --build . --config debug
Note that if you don't use the --config parameter, a debug build is performed Wait for the build to complete.

4.2b – Compiling from Visual Studio
 Open the solution created by cmake (build/OpenCPN.sln). Compile the whole solution or individual projects. You have to compile project opencpn before you can compile any plugins (to be fixed in the configuration

process)
If you want to debug, don't forget to select opencpn as a start-up project and if you didn't add the WX DLL path to
the PATH environment variable earlier, copy the needed WX DLLs to the build directory (Debug or Release,
depending on which version you build). The DLLs can be found in C:\${WXDIR}\lib\vc_dll and you will need:
Debug: wxbase30ud_net_vc_custom.dll, wxbase30ud_vc_custom.dll, wxbase30ud_xml_vc_custom.dll,
wxmsw30ud_adv_vc_custom.dll, wxmsw30ud_core_vc_custom.dll
Release: wxbase30u_net_vc_custom.dll, wxbase30u_vc_custom.dll, wxbase30u_xml_vc_custom.dll,
wxmsw30u_adv_vc_custom.dll, wxmsw30u_core_vc_custom.dll
See 6 - Running below to prepare to run the Debug or Release build (from Visual Studio or otheriwse) without
installing.
5 – Optional: Creating the installer package
Build the PACKAGE project and opencpn_X.Y.Z_setup.exe is created in your build directory (replace X with the
release and Y with the build number). Use the following command:

cmake --build . --target package --config release
This will create a directory called "_CPack_Packages" and under release directory. You should find your install
package under the NSIS sub-directory.
Currently the installer packs the DLLs from the git repository into the package. You have to replace them with your
custom built DLLs after the installation if you want to experiment with different versions and build settings of the
wxWidgets libraries.
6 – Running OpenCPN from the build directory (without
installing)

 Create a folder named uidata in the case of a Debug build in your build directory in the case of a Release build in the build/Release directory and copy the following files from src/bitmaps into it:
styles.xml, toolicons_traditional.png, toolicons_journeyman.png, toolicons_journeyman_flat.png. Copy the following folders from the data subfolder of the source tree to your build/Debug folder (Debug

build) or to the build/Release directory (Release build)
gshhs, s57data, tcdata. For a Release build you also need to copy the following from builwin/crashrpt to build/Release:
CrashRpt1402.dll, CrashSender1402.exe, crashrpt_lang.ini, dbghelp.dll
Running for the first time
To run the first time issue the following command from a command prompt in the build/Debug or build/Release
directory:
opencpn.exe /p
This will generate an opencpn.ini file in the current directory as well as create the opencpn.log file.
7 – Something does not work as expected?
Before getting desperate, read you openpcn.log logfile, it is likely that the problem is clearly identified there.
‹ Compiling - Mac OS XCompiling Standalone Plugins and building Install Packages › Printer-friendly version
Hosting and bandwidth for OpenCPN.org is generously donated by SouthBay Network
OpenCPN is open source software

