keeping your OPENCPN debug version current and using 'Git"

by Rick Gleason based on comments by Jesper Weissglas September 30, 2012
Supplement to: Development debugging environment setup help
OpenCPN Cruisers and Forums Note #74 has the most current Setup Help in this thread. Also refer to Compiling Windows on the OpenCPN website
manual updating certain folders in the 'build' directory after refreshing your local git repository

1. Git Commands and Understanding the 'Git' Process.
A. The source tree (the opencpn-git directory on your computer) is only updated by git commands, such as "git fetch" or "git reset".

B. "Builds" do not modify the source tree at all, it only works inside the build folder (..opencpn-git/build directory).

C. A build will update all executable files in the build folder to the latest versions from the source tree. But static data files that are not part of the build process (four folders uidata, s57data, gshhs and share) are not touched by a build. So when new versions of the files in those arrive via Git, you need to update them manually from the source tree to your build folder. When starting from scratch with a completely empty build folder, you will need to create/copy those static data file folders manually to the build directory.
D. One example: When you "git fetch" a new version you may get new versions of the Options Window and uidata files and a lot of updates to the C++ source files, all located in ..opencpn-git folder. A build will then compile the new C++ files, and put the result in your build folder. Running this build will get you the new Options Window features, but the icons will be missing since you are running with an old version of styles.xml and toolicons_xxx. Copying the new versions manually from the source tree to the build folder now gives you the correct icons.
2. To run the Debug version of OpenCPN Beta, some sub-folders under the' build' folder need to be manually updated. The folders that need to be manually copied into are Uidata, s57data, gshhs and share:
A. Copy src/bitmaps files, so that icons used by Opencpn show properly and are updated.

 styles.xml

 toolicons_journeyman.png

 toolicons_joourneyman_flat.png

 toolicons_traditional.png
From: C:\<data-dir>\opencpn-git\src\bitmaps
To (create this folder if it does not exist): C:\<data-dir>\opencpn-git\build\uidata

B. Copy the entire s57data folder and all files, so that Vector Files will work.

From: C:\<data-dir>\opencpn-git\data\s57data

To: C:\<data-dir>\opencpn-git\build\s57data
C. Copy the entire gshhs folder which is the "Global Self-consistent, Hierarchical, High-resolution Shoreline Database" This is where the data files for the world background are located. Copy all files and subfolders

From: C:\<data-dir>\opencpn-git\data\gshhs <-- Source tree original from Git

To: C:\<data-dir>\opencpn-git\build\gshhs <-- In build folder. This is where your build will look for the files.
Notes about gshhs: 3.0.2 doesn't have gshhs, just the blue lines. Gshhs is new for 3.1. Gshhs is not a chart. It can't and shouldn't be loaded in the charts window. It should load automatically. If it doesn't, it's your program run log (c:\ProgramData\opencpn\opencpn.log) that can maybe tell you why, not the build log. Gshhs files are just static data, not involved in the build. The run log should have something like ...Loading World Chart Q=4 in 873 ms. and ...Background world map loaded from GSHHS datafiles found in:
D:\OpenCPN\Mainline\build\Release\gshhs\
D. Gshhs detail:. Look at the top of Chart Sources | Official OpenCPN Homepage, there is a High Resolution Background Chart available there. The files are too large to be part of the default install and if you always show cm93, then gshhs is not initialized because it is not needed.

E. Copy the share and tcdata folders to a similar folder under build.
1. The "share" folder contains optional Help files and Language translations.

2. The "tcdata" folder contains optional tides and currents datasets. These are not strictly needed for OpenCPN operation. Populate those folder if you need to test those features.
use git to update your local Source tree
1. Useful 'Git' Commands used to refresh your local source tree (c:/<data-dir>/opencpn-git) after you have succeeded in running OpenCPN in debug mode".

A. Goto Windows "Start" box in the search programs and files box at the bottom.

B. Type "cmd" a black Command box pops up,

C. Then type cd.. (two periods) until you're at the root directory (or type cd c:\)

D. The root directory should show as "c:\" only with no sub-directories.

E. Then type cd C:\<your data directory>\opencpn-git
F. Then issue the command "git fetch --all"

G. This will fetch and update all opencpn beta source files in folder opencpn-git.

H. The response will be something like:
Fetching origin

remote- Counting objects: 100% (30/30), done.

remote- Compressing objects: 100% (30/30), done.

remove- Total 70 (delta 58), reused 52 (delta 40)

Unpacking objects: 100% (70/70), done

From git://github.com/OpenCPN/OpenCPN

e019cc0..918a44b master ->origin/master
I. If you issue the git fetch --all command again, response with be "Fetching origin" because you've already updated your copy at

C:\<your data directory>\opencpn-git
2. If your "git fetch --all" command is not updating to a newer beta version try: git status ...will tell you which branch you are on. If you're not on master you can
 git branch master or git checkout master

3. For example:

1. If you do a git status and the response is something like:

#On branch master

Your branch is behind "original/master" by 31 commits, and can be fast forwarded

Untracked files ...with a list

nothing to add to commit but untracked files present (use "git add" to track)

B. Then try: git branch master it may respond: fatal: a branch named 'master' already exists.
C. Then try: git fetch the response: remote: counting objects: 22, done. Then compressed and unpacked them, done.... Then it shows: From git://github.com/OpenCPN/OpenCPN 92f9565..0651fbb master -> origin/master
D. Then try: git status
#On branch master

Your branch is behind "origin/master" by 34 commits and can be fast-forwarded.
untracked files....
E. Then try: git checkout master
F. If that doesn't work, now it is time to try the next set of commands to get it to update your local source tree .
4. How to get your source tree in sync with master.
A. In this case you may have a specific commit checked out and thus "git fetch" fetches new commits but doesn't apply them to your working directory.

B. Try "git merge master"

C. The response may be "Already up to date"

D. In which case another git command you could try is: git reset --hard origin/master ...If this doesn't help you will need to google for a solution on how to get your local git repo in sync with master.

E. This command worked for me, resulting in a download that brought me current to the master.
5. Other Git Commands

A. Help - To see other git commands, type "git" from your local repository c:\<your data-directory>\opencpn-git\. Be careful about using all of these commands, read up on them online before using

B. Read up
1. Everyday Git
2. Git Basics-View Commit History,

3. Git Log
4. Git Show
5. http://gitref.org/basic/#diff
6. Do not use "Git Commit" unless you know what you are doing! git shortlog -s is interesting.

C. Issuing "git status" to show untracked files, or "git log" to see the log of commits (changes to the git files) when and who, newest to oldest.

after using 'git', Just 'build' the new debug version.
1. NOTE: There is no need to rerun cmake every time you pull new stuff from github.

All you need to do is "git fetch", go to Visual Studio and "build".

2. Open MS VSC++ and pick Debug - Build Solution
3. Then pick Debug - Start Debugging
Last Resort to get it working - Start over!
1. If you cannot get your MS VS C++ OpenCPN.sln Project to run properly under "Debug mode" after selecting "Clean" and then "Rebuild" one suggestion as a final solution, you should go back to scratch. The second time is much faster because you've done it before. :

A. Delete everything in your build directory except the 4 folders uidata, gshhs, s57data and share. Keep your opencpn-git source tree directory.
B. Go "cmake -G "Visual Studio 10" .." from there again and now you have a clean OpenCPN.sln solution you can open in VS2010 and build again.

C. If that does not work, you could start completely over by

1. Saving the 4 directories Jesper listed above.

2. Then deleting opencpn-git source tree directory.

3. Then issuing the appropriate git clone command to re download using the Open Visual Studio Command Prompt

4. cd C:/<data-directory>OpenCpn-git directory.

5. Then execute: git clone git://github.com/OpenCPN/OpenCPN.git

6. See Thread Note #74 for more information.

git clone git://github.com/OpenCPN/OpenCPN.git opencpn-git

cd opencpn-git
mkdir build
cd build
cmake -G "Visual Studio 10" ..

IF all goes well, then issue

cmake --build .
